

SP-2XX Series

marks a new step in the combination of high performance and modularity

SP-2xx/SP-300 are state-of-the-art modular research grade potentiostat/galvanostat/FRAs with remarkable specifications. Drawing upon Bio-Logic's long history of flexible and modular potentiostat design, the breakthrough technology incorporated in the SP-2xx/SP-300 results in exceptional performance.

The main differentiation between the SP-2xx and SP-300 is the chassis size and configuration. The SP-2xx chassis offers one slot to insert one potensiostat/galvanostat board equipped with EIS, ARG and/or ULC options whereas SP-300 chassis offers two slots. One slot in the SP-300 chassis must be occupied by a potentiostat channel, while the second slot may be occupied by an additional potentiostat channel (for bipotentiostat applications, for example) or a booster kit (to be selected in our range of four internal boosters ± 1 , ± 2 , ± 4 , ± 10 A).

Alternatively SP-240 chassis is available (Chassis with 4 A booster included).

The SP-2xx/SP-300 are floating instruments, allowing them to be used with grounded cells, autoclaves, and in glove boxes. Thanks to portability and floating, on-site and in-stream corrosion experiments can be performed. The SP-2xx/SP-300 are supplied with a built-in calibration board. This allows the user to run a calibration routine as needed or when the most accurate measurement is demanded.

Low current sensitivity can be improved using the Ultra Low Current option (down to 1 pA range with 76 aA resolution).

Electrochemical Impedance Spectroscopy (EIS) measurements can be added as an option to the **SP-2xx/SP-300**. The built-in FRA has a frequency range of 10 μ Hz up to 7 MHz.

This remarkable high frequency measurement can be made with an accuracy of $1\%/1^\circ$ up to 3 MHz and $3\%/3^\circ$ to 7 MHz.

The EC-Lab® software package supplied with the system is an easy-to-use, feature-rich interface for new and advanced users alike. It provides a wide range of techniques and applications that can be sequenced and/or linked to design any experiment the user can imagine.

A variety of analysis tools are available for electro-analytical and corrosion data, as well as equivalent circuit

modeling for impedance data interpretation.

Modules

Communication board

The communication board of the unit is connected to a computer via USB or 100BaseT Ethernet. The unit can also be installed as a device on a Local Area Network using a static IP address.

Any computer on the network can connect to the unit, even for remote access. Data is stored in a large on-board buffer (700,000 data points) and downloaded continuously.

Calibration board

Using the built-in calibration board, the user initiates a routine to perform a full calibration of the SP-2xx/SP-300 and of the booster channel when applicable. This procedure checks and adjusts offsets and gains versus internal reference circuits and calibrates the current ranges.

Potentiostat/galvanostat board

The Potentiostat/Galvanostat in the SP-2xx/SP-300 has 9 available performance bandwidths. As a result, the system exhibits excellent electronic stability while making high speed measurements.

The floating mode (with earth isolated power supply) allows experiments to be run on grounded cells, on pipelines or autoclaves.

An exclusive feature of the SP-2xx/SP-300 is the on-board operating system.

The control of the experiment is provided by the digital board, even when communication with the computer is lost.

Three analog filters are available to remove unwanted noise during an experiment: 50 kHz, 1 kHz and 5 Hz.

SP-300 options (uses the 2nd slot)

Booster

The SP-300 has one slot available to accommodate a current booster chosen among four differents boosters: ±1 A/±48 V. ±2 A/±30 V, ±4 A/[-3;14] V, ±10 A/[-1;6] V. This extended range allows all application areas of electrochemistry to be covered. The SP-240 chassis includes the 4 A booster by default.

Bipotentiostat

The SP-300 can accommodate an additional potentiostat board with or without EIS/ULC/ ARG options.

Options

Electrochemical Impedance Spectroscopy (EIS)

By choosing the EIS capable potentiostat (Z option) the user can perform Electrochemical Impedance Spectroscopy up to 7 MHz. This built-in option does not require an external analyzer. In addition to the Single Sine method of EIS measurements, the SP-2xx/SP-300 can utilize a fast Fourier-based Multi-Sine technique to reduce experimental acquisition time.

Analog Ramp Generator (ARG)

The analog ramp generator is an optional module. It is automatically detected and provides a true analog voltage scan up to 1 MV/s with an acquisition down to 1 µs.

Ultra Low Current (ULC)

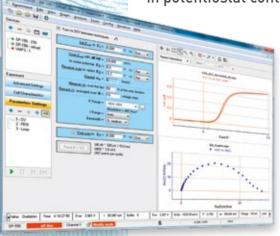
An ultra low current option is available for the SP-2xx/SP-300. This option lowers the base current range from 1 μA to 1 pA, thus the resolution of the low current option is 76 aA on the 1 pA full scale range. It consists of a cell cable with a high sensitivity electrometer in-line that is located close to the cell.

FEATURES

- Compliance: ±12 V
- Control voltage: ±10 V
- Maximum current: ±500 mA Calibration board
- Current resolution: 760 fA (standard board)
- Floating mode
- Analog filtering
- Full stability control mode (9 bandwidths)

OPTIONS

- EIS measurement: 3 MHz - 10 µHz (1%, 1°) 7 MHz - 10 µHz (3%, 3°)
- Ultra Low current: additional ranges 100 nA to 1 pA with a resolution of 76 aA
- Analog ramp generator: 1 MV/s, acquisition time 1 µs


SP-300 OPTIONS

- Internal boosters:
 - ±1 A/±48 V, ±2 A/±30 V, ±4 A/[-3;14] V, ±10 A/[0;5] V
- Bipotentiostat

EC-Lab® software package

A comprehensive software package

EC-Lab® is an advanced software package for performing electrochemical measurements. With more than 15 years of development and constant improvement in techniques and features, EC-Lab® software has become the benchmark in potentiostat control and analysis software.

EC-Lab®: modular and powerful for advanced users

Experimental sequence builder.

EC-Lab® software contains more than 80 techniques. These techniques can address applications in voltammetry, EIS, corrosion and energy source development. A powerful technique builder can execute a series of different modular techniques, wait and loop options to create complex experimental sequences. Even within each technique, the user can create up to 100 linked sequences of the experiment with different parameters.

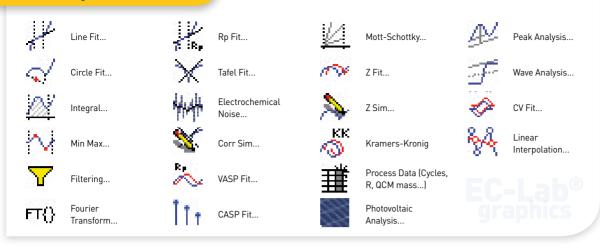
Limit detection and cell protection

Several experimental limit parameters are available to protect the electrochemical cell. These limits can be set either for all the experiments in a series or for individual techniques. Special techniques have been added to monitor the external analog input voltage which can be calibrated to a temperature, frequency value, or rotation speed. This allows the experiment to terminate (or skip to the next technique in a series) when a pre-set voltage is reached.

External device control

Some electrochemical experiments require potentiostats to work with other instruments such as a QCM, a rotating ring-disk electrode or a spectrophotometer. **EC-Lab®** has an advanced "external device configuration" menu that can be configured to control and record data from these separate instruments, such as QCM frequency or temperature.

EC-Lab® Express: easy to learn software for new users

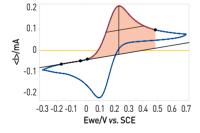

More than 45 techniques with up to 100 sequences can be linked in **EC-Lab® Express** software.

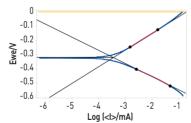
This software is very easy-to-use. The settings and graph are shown on one screen view. An experiment selector enables the user to quickly switch between techniques.

EC-Lab® Express has been optimized to offer short acquisition time down to $12 \mu s$ (1 μs coupled with ARG option).

Analysis tools

EC-Lab® Graphics


A comprehensive graphics package.


EC-Lab's graphic package is provided with the software and includes a powerful tool to create unique graph templates.


With the advanced graph properties, the user can create new variables for each axis. This enables mathematical functions to be performed on data plotted on any axis.

Powerful analysis tools (such as peak find/height, convection wave, integral, Tafel fit, Rp determination) are available in **EC-Lab®**. These analyses incorporate classical fit routines (linear, circular) and algorithms. All the analysis results are stored in a separate file.

EC-Lab's EIS modeling package utilizes the equivalent circuit approach. There are over 150 standard circuits and two minimization algorithms available for understanding impedance plot information. The user can define and build his/her own circuit model using a range of 13 simple elements (R, C, L, La, Q, W, G, Ga, Gb, Wd, M, Ma, Mg). A batch processing feature allows fitting of multiple cycles in an impedance experiment.

OEM package

Bio-Logic has developed an OEM package and **LabView**® drivers which are available for our customers. This package includes almost all the DC and AC techniques present in **EC-lab® Express**. A **Delphi®** and **Veepro®** test program and **LabView®** examples are also provided.

Specifications

Maximum resolution Bandwidth (-3 dB) Filtering

Data sampling

CHANNEL BOARD	
General functions	
Potentiostat	yes
Galvanostat	yes
Impedance analyzer	yes (option)
Coulometer	yes
Analog ramp generator	yes (option)
Floating mode	yes
IR compensation	yes
Analog filtering	yes
External input/outputs	yes
Cell connection	2, 3, 4 or 5 terminal leads (+ ground)
Sampling rate	200 µs with EC-Lab [®] Down to 12 µs with EC-Lab [®] Express
Scan rate	330 V/s (EC-Lab [®] Express with dE/dt = 15 mV / 45 μ s)
Control amplifier	
Compliance	±12 V
Maximum current	±500 mA continuous
Gain-bandwidth compensation	9 programmable stability factors
Highest unity gain bandwidth	1.4 MHz
Slew rate (no load)	> 20 V/µs
Rise/fall time (no load)	< 500 ns < 200 ns with boosters
Voltage control	
Ranges	adjustable from ±10 V down to ±30 mV
DC level shift	±10 V, 300 μV resolution
Accuracy	< ±1 mV ±0.03% of setting
Lowest resolution	1 μV
Current control	
Ranges	±1 A, ±100 mA, ±10 mA, ±1mA, ±100 μA, ±10 μA, ±1 μA (7 ranges)
Additional ranges	±100 nA, ±10 nA with gain
Accuracy	< ±0.1% of range ±0.03% of setting
Resolution	0.0033% of range
Voltage measurement	
Ranges	±10 V, ±5 V, ±2.5 V, ±250 mV, ±25 mV
DC level shift	±10 V, 300 μV resolution
Accuracy (DC)	< ±1 mV ±0.03% of reading
Maximum resolution	< 0.0033% of range
Bandwidth (-3 dB)	8 MHz
Filtering	50 kHz, 1 kHz and 5 Hz, low-pass 4 poles Sallen-Key filters
Data sampling	1,000,000 samples/s
Current measurement	
Ranges	9 ranges (auto/auto limited/manual) ±1 A down to ±10 nA
Accuracy (DC)	(±100 nA, ±10 nA with gain) <±0.1% of range ±0.03% of reading
Maximum resolution	0.0033% of range
Bandwidth (-3 dB)	8 MHz

8 MHz

50 kHz, 1 kHz and 5 Hz, low-pass 4 poles sallen-key filters

1,000,000 samples/s

Electrometer	
Input impedance	1 TΩ 25 pF typical
Input bias current	< 10 pA
Bandwidth (-3 dB)	8 MHz
Common mode rejection ratio	> 60 dB at 100 kHz
Ground to chassis impedar	nce
Floating mode	10 MΩ 10 nF typical
Grounded mode	< 10 kΩ
IR compensation	
Resistance determination	EIS
Compensation mode	hardware or software positive feedback
Compensation range	programmable from 0 to 100% of the current range resistor
Auxiliary inputs/outputs	
External input	can be used to apply an external waveform directly to the control amplifier
2 analog inputs	automatic ±2.5 V, ±5 V, ±10 V ranges, 16-bit resolution
1 analog output	±10 V range 16-bit resolution
2 digital inputs	TTL level: trigger input and open input
1 digital output	TTL level: trigger output
2 monitor outputs	cell current and compensated working electrode potential

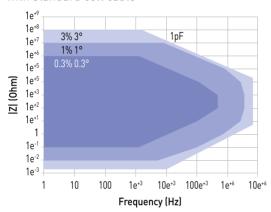
General		
Slot num	ber SP-200	1
	SP-240/SP-300	2
Dimensio	ons SP-200	225 x 167 x 410 mm (H x W x D)
	SP-240/SP-300	225 x 205 x 410 mm (H x W x D)
Weight	SP-200	6 kg
	SP-240/SP-300	7.5 kg
Power		85-264 V. 47-440 Hz

ANALOG RAMP GENERATOR (optional)

Scan ranges	1 V/s, 100 V/s, 10 kV/s, 1 MV/s
Scan resolution	0.0015% FSR* (down to 15 μV/s)
Voltage range	±10 V
Accuracy	< ±0.1% of range
Number of cycles	1 to 65535
Sampling rate	1 μs

^{*} FSR: Full Scale Range

IMPEDANCE ANALYZER (optional)

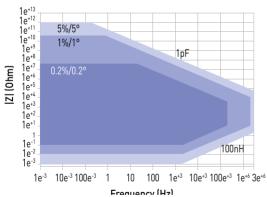

10 μHz to 7 MHz
< 10 ppm of the setting
0.5 mV to 2.5 V with 1 mV resolution $0.1%$ to $100%$ of the current range with resolution of $0.004%$ of the range
see contour plot
single sine, multisine, FFT analysis

BOOSTERS (SP-300 only)

Boosters	1 A/48 V	2 A/30 V	4 A/14 V	10 A/5 V
Compliance voltage	±49 V	±30 V	-3 V ; +14 V	-1;+6 V
Control voltage	±48 V	±30 V	-3 V ; +10 V	-1 ; +6 V
Compliance current	±1 A	±2 A	±4 A	±10 A
Current accuracy	0.1% range	0.1% range	0.1% range	0.3% range
EIS frequencies	10 μHz - 2 MHz	10 μHz - 1 MHz	10 μHz - 1 MHz	10 μHz - 1 MHz
Bandwidth (-3 dB)	>2 MHz	>3 MHz	>4 MHz	>8 MHz
Slew rate (no load)	>15 V/µs	50 V/µs	50 V/μs	50 V/µs
Rise/fall time (no load)	<250 ns	<200 ns	<200 ns	<200 ns
Floating mode	yes	yes	yes	yes
Parallel ability	no	yes	yes	yes

Channel board equipped:

with standard cell cable


ULTRA LOW CURRENT (optional)

Cell control

Maximum current resolution	0.004% of the range (76 aA max)
Applied current accuracy	< ±0.1% of range ±0.03% of setting
	for ±500 mA to ±100 nA ranges
	< ±0.1% of range ±1% of setting
	for ±10 nA range to ±1 nA ranges

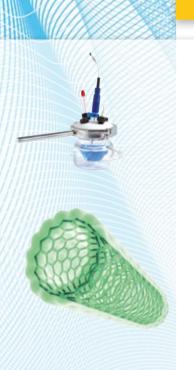
 $<\pm0.2\%$ of range $\pm2\%$ of setting for ±100 pA range

with ultra low current option

Current measurement

Danzas	13 ranges (auto/auto limited/manual)
Ranges	±1 A down to ±1 pA (±10 pA, ±1 pA with gain)
Maximum resolution	0.004% of the range (76 aA max)
Accuracy (+20°C ≤ T ≤ +30°C)	$<\pm0.1\%$ of range $\pm0.03\%$ of setting for ±500 mA to ±100 nA ranges
	$< \pm 0.1\%$ of range $\pm 1\%$ of setting for ± 10 nA range to ± 1 nA ranges
	< $\pm 0.2\%$ of range $\pm 2\%$ of setting for ± 100 pA range
	$< \pm 1\%$ of range $\pm 2\%$ of setting for ± 10 pA range
	$< \pm 10\%$ of range $\pm 2\%$ of setting for ± 1 pA range

	leci	tror	ne	ter
_				٠


Impedance	100 TΩ 6 pF typical
Bias current	< 1 pA (300 fA typical)
Bandwidth	5 MHz
EIS accuracy	see contour plot

Specifications subject to change

Brochure released on july 2015

Applications

Fundamental electrochemistry

Fundamental and analytical electrochemistry research is probably the most demanding application with respect to instrumentation. This type of research is aimed at exploring material limits, and therefore requires the most advanced instrument capabilities. The analog ramp generator combined with a hardware ohmic drop compensation is well adapted to reach very fast scan rates and highlight intermediate reaction species.

Nanotechnology/sensors

SP-2xx/SP-300 used with an ultra low current option are well suited for nanotechnology research and measurements on ultramicro-electrodes. Currents as low as a few femto amps can be measured with precision. Hardware filtering allows the user to remove unwanted electro-magnetic noise which can affect the quality of the data. EIS measurement using the ultra low current option is able to explore the electrochemical characteristics of nano-devices.

Batteries/fuel cells

Research interest in new energy sources for electric vehicles (EVs) and hybrid electric vehicles (HEVs) is rapidly growing. Researchers in these fields require an instrument that can measure and apply high currents. The **SP-300** with its high current booster option, is the perfect solution. Bio-Logic is experienced in providing instruments to investigate intercalation compounds and batteries. A major feature of the **SP-2xx/SP-300** is the ability to switch from potential control to galvanic control in a very short time. EIS capability is an important tool to study aging of batteries in real operating conditions. A multi-sine EIS technique in **EC-Lab®** software allows measurements to be made quickly to avoid changes during the experiment.

Photovoltaic/solar cells

A major area in renewable energy research is in capturing the energy of sunlight. With the need to develop commercial solar cells and modules, it is becoming increasingly important to improve efficiencies and performance of these devices, as well as their price. The **SP-300** and its high voltage/current capabilities are suitable tools in developing photovoltaic cells and components.

Corrosion/coating

The SP-2xx/SP-300's ultra low current option is ideal for corrosion experiments especially very low corrosion rates determination. With the floating mode, measurements can be carried out on grounded cells, such as pipelines or in autoclaves. The SP-2xx/SP-300 exhibit extremely high resolution and accuracy in current and potential measurements. Combined with a high acquisition speed, the SP-2xx/SP-300 are well-suited for making Electrochemical Noise Measurements using dedicated techniques (ZRA - ZVC).

Electroplating is also an application requiring high current. The **SP-300**, with their high current booster option, is the perfect solution.

Haadquarters

Bio-Logic SAS

1, rue de l'Europe 38 640 Claix - France Phone: +33 476 98 68 31 Fax: +33 476 98 69 09

www.bio-logic.info

Affiliate offices

Bio-Logic USA, LLC

P.O.Box 30009 - Knoxville, TN37930 - USA Phone: +1 865 769 3800 - Fax: +1 865 769 3801

Bio-Logic Science Instruments Pvt Ltd

304, Orion Business Park, Next to Cine Wonder, G. B. Road, Thane(W), 400 607 Mumbai - India